

HINS R&D

Integration, testing and commissioning

Bob Webber

Fermilab Accelerator Advisory Committee May 6, 2008

HINS - AAC History

- First HINS presentation to AAC was two years ago, May 2006
- Most recent HINS presentation to AAC was August 2007

Talk Outline

- Preview of today's message
- · Reminder of HINS Program R&D Objectives
- 2008 Goals in Meson Lab
- Current status
- Facility Layout
- · Cavity test cave cryogenics
- Plans for beam operations and preparations for RFQ commissioning
- Technical systems updates
- · BNL collaboration
- Resource tight spots
- Summary

Today's Message

- · Progress is being made in many areas of the HINS program
 - Two room-temp spoke cavities have been successfully commissioned to full peak RF power; two more await
 - New modulator charging supply is installed and commissioned
 - Proton ion source system is substantially complete for initial beam operations
 - Final preparations are underway for RFQ installation and initial power testing
 - Cryogenics distribution equipment for cavity test cave is being procured
 - SC solenoid magnet power supply & quench protection system design has begun
- · ... but more slowly than anticipated
 - RFQ completion and delivery has been delayed considerably
 - Ion source is still in MS6
 - Cryo distribution and test cryostat facility to allow full pulsed power testing of SSR1 will not be ready before late 2008

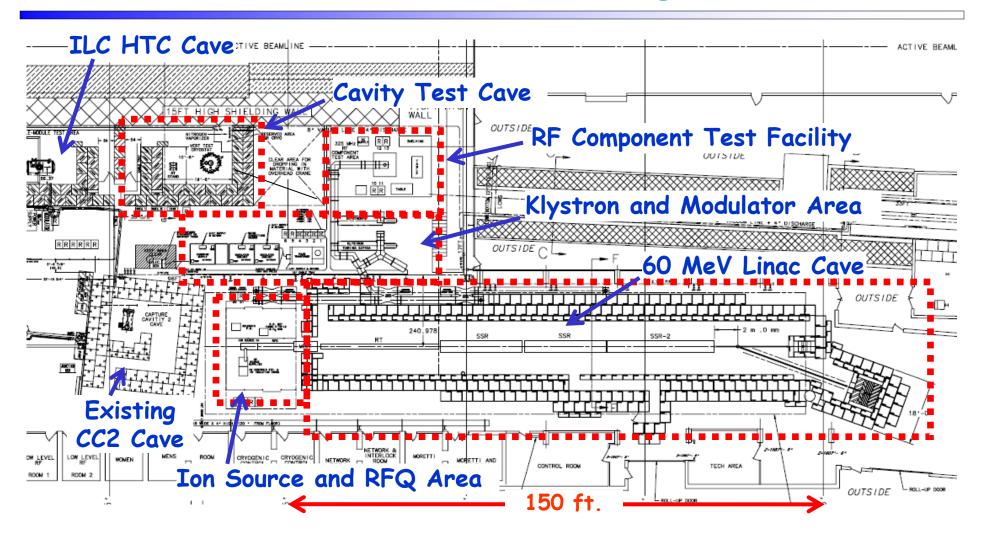
HINS Program Objectives

- Demonstrate high power RF distribution and 3.5 msec pulse operation of multiple cavities powered from a single klystron
- Demonstrate performance of 325 MHz high power vector modulators for amplitude and phase control of multiple cavities
- Measure axially-symmetric beam performance with roomtemperature crossbar spoke resonator cavities and SC solenoid focusing in the front-end Linac
- Demonstrate high intensity beam acceleration at 10 MeV and beyond using superconducting spoke resonator RF structures
- Demonstrate high-speed (nsec) beam chopping at 2.5 MeV
- Demonstrate performance of this Linac design concept and measure the resulting beam quality to 60 MeV

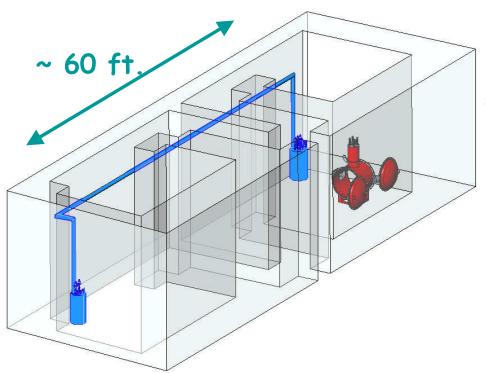
This all adds up to building a one-of-a-kind superconducting 60 MeV H- linac

HINS 2008 Meson Goals

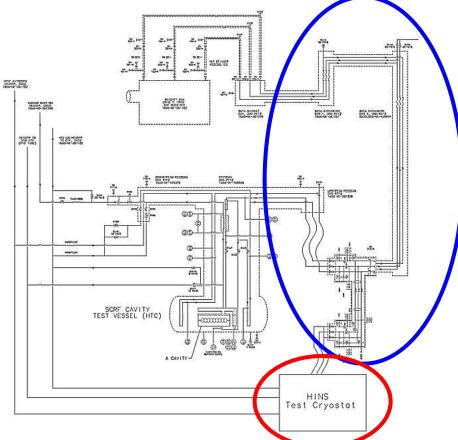
- Relocate proton ion source from MS6 to MDB and re-commission - May/June
- Receive RFQ from ACCSYS June/July
- · Commission RFQ to full RF power July/August
- · Receive and RF condition the remainder of room temp cavities - August thru December
- · Establish 2.5 MeV beam from RFQ November
- · Install test cryostat and cryo transfer lines for HINS test cave - December
- Test first SSR1 SC spoke cavity to full pulsed power - December?
- Design and begin construction of linac shielding cave in MDB - December


HINS Status

- 2.5 MW, 325 MHz HINS klystron is operational
- · HINS RF Component Test Facility is operational
- RF high power vector modulator testing is in progress
- Room temperature cavity conditioning is in progress
- Ion Source/RFQ Area is outfitted with utilities
- RFQ infrastructure system details are being finalized
- Proton ion source/LEBT system is operational in MS6
- · H- ion source development is underway
- Design of power supply and quench protection systems for superconducting solenoid magnets has begun
- Vector modulator bias power supply system design is ongoing
- LLRF system from SNS for 2.5 MeV beam operations is installed and being tested in a low power system
- Cryogenics distribution equipment for cavity test cave is specified and in procurement



HINS Floor Plan in Meson Detector Building



Cryogenic Distribution System to Cavity Test Cave

- New cryogenics distribution components shown in blue
- HINS cavity test cryostat shown in red

• ILC HTS and HINS Test Cave cryogenics system diagram

Cryogenic Distribution System to Cavity Test Cave

Technical Specification

for

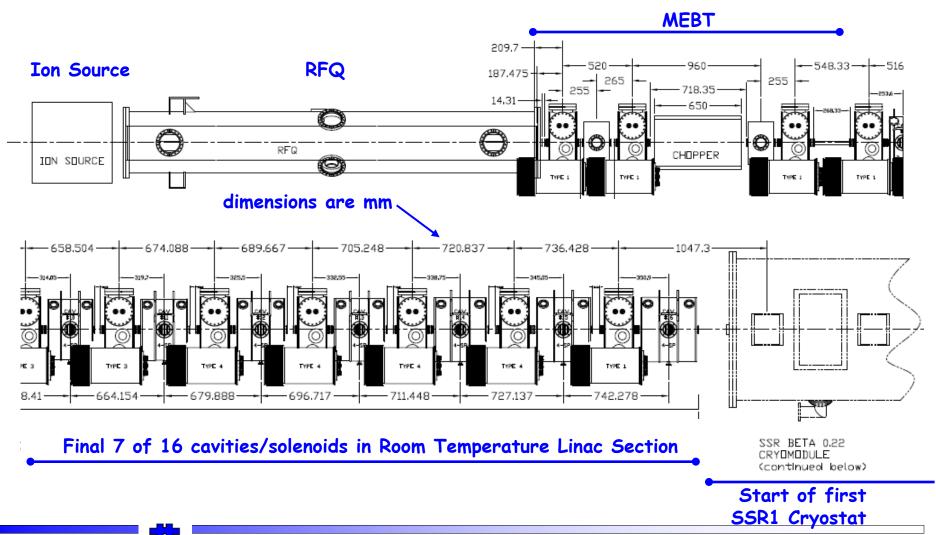
HINS Test Cryostat

Cryogenic Distribution System

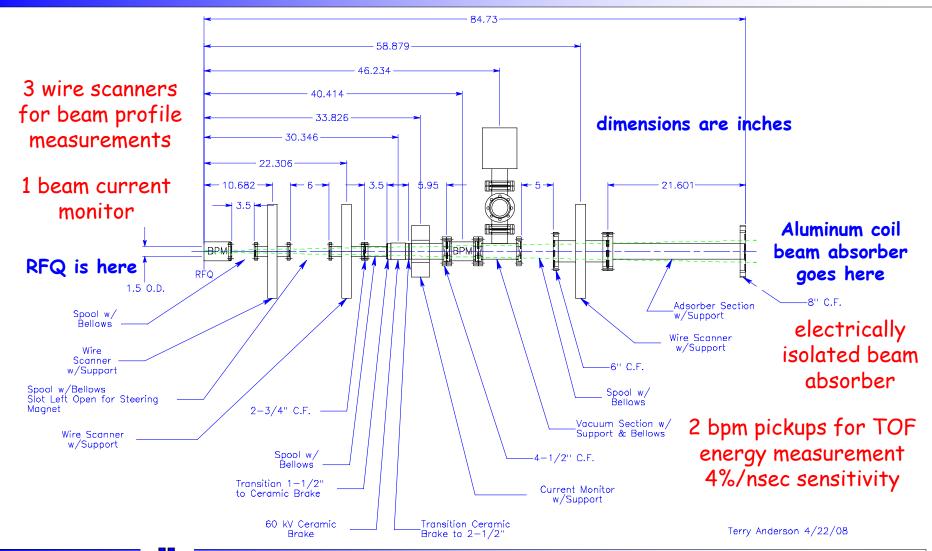
1650 - ES - 381345 Revision 0

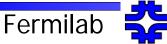
Author(s):	Arkadiy L. Klebaner	Date:2/27/08
Reviewed by:	Jay C. Theilacker	Date:2/27/08
Cryostat Interface: —	Thomas H. Nicol	Date:2/27/08

- Specification for cryogenics distribution system and components was completed in February
- Bidding for design and fabrication closes May 16
- · Anticipate ~6 months until delivery

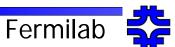

HINS Beam Staging Thoughts

- 2.5 MeV operation
 - With short diagnostic/transport line and absorber downstream of RFQ
 - Diagnostic line design is done and absorber is assembled
 - RFQ delivery and RF conditioning is still critical path
 - Goal: 2.5 MeV beam in the fall of this year
- >2.5 MeV and <10 MeV operation ??
 - Possible beam operation w/ MEBT plus first 4? RT cavities and solenoids
 - Beam test of RF distribution and RF high power vector modulator control
 - Not before early 2009
 - limited by enclosure construction, MEBT buncher cavities, LLRF development, and focusing solenoid production
- Full 10 MeV Room Temperature section operation
 - Fall 2009?
 - · Solenoid production, magnet power supply systems, and cryogenics system are critical path
- 20 MeV operation with first SSR1 cryomodule
 - Fall 2010? SSR1 cavities, cryomodule, and solenoids are needed
- Full 60 MeV operation
 - Late 2011?

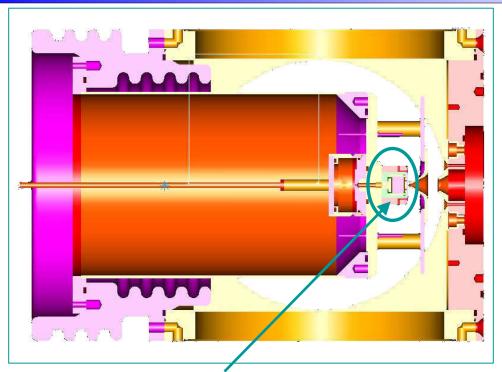


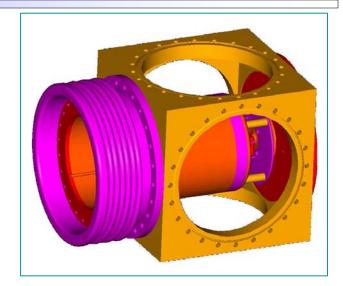

HINS RT Section Layout

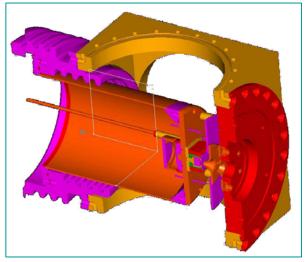
2.5 MeV Transport Line Plan



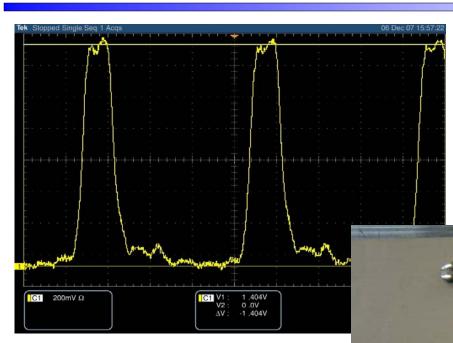
HINS Proton Ion Source and Injector


Ion Source Control and High Voltage Racks


Ion Source and LEBT

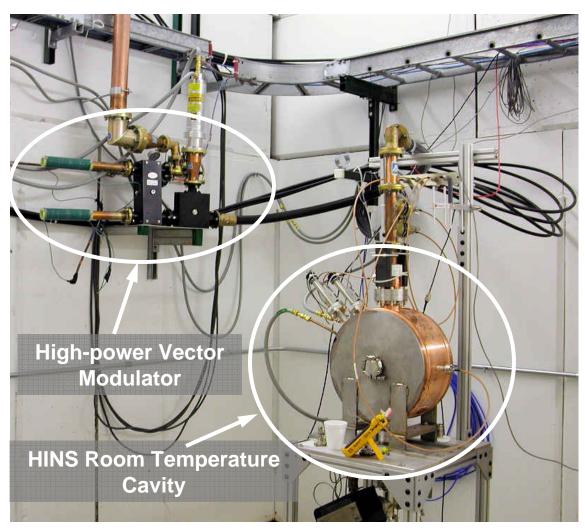


Magnetron H- Ion Source Adaptation

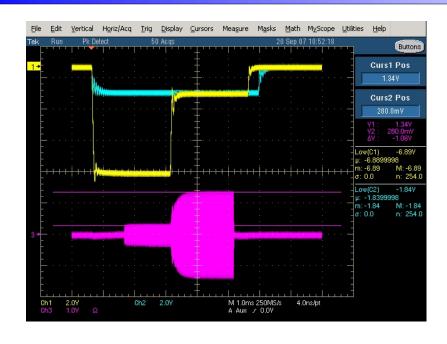


- Fermilab H- source re-configured to serve initial HINS H- operation
- This source is not expected to deliver full PD/HINS/PX duty factor capability
- · Further source development is in PX R&D Plan

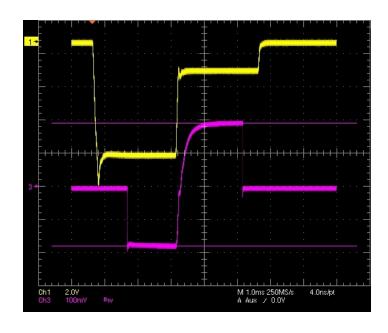
MEBT Chopper Prototyping


- · 100 ohm meander slow-wave line
- · 20 mm in transverse dimension

- · 1.4 kV pulses from prototype KenTech pulser
- · 5 nsec/div
- · 50 MHz rep rate



HINS RT Cavity and Vector Modulator Operating in Cavity Test Cave



Vector Modulator Performance with Cavity

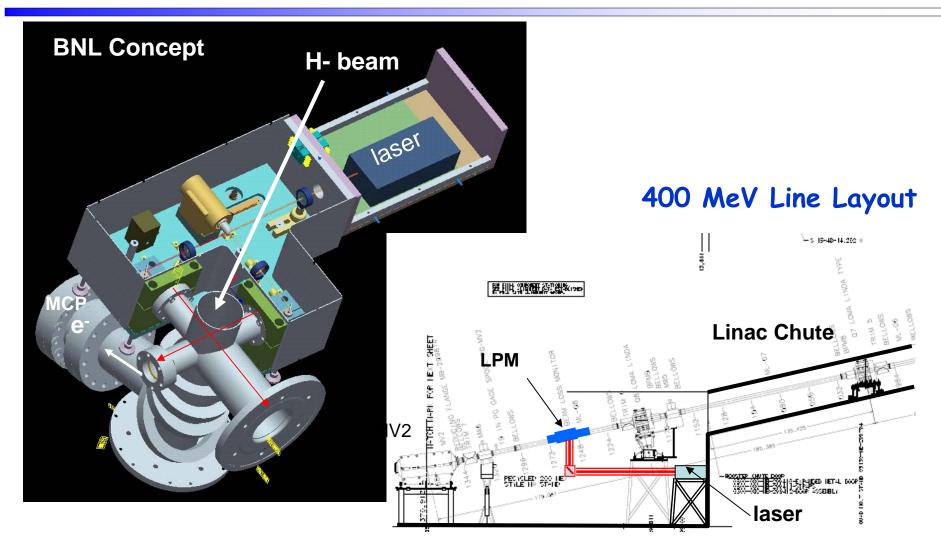
13 dB Amplitude Control with Vector Modulator for 6 kW 3.5 msec RF Pulse

Red trace is cavity RF amplitude; blue and yellow are vector modulator bias currents

155 Degree Phase Control with Vector Modulator for 6 kW 3.5 msec RF Pulse

Red trace is cavity RF phase signal; blue and yellow are vector modulator bias currents

RT Section Support Girders

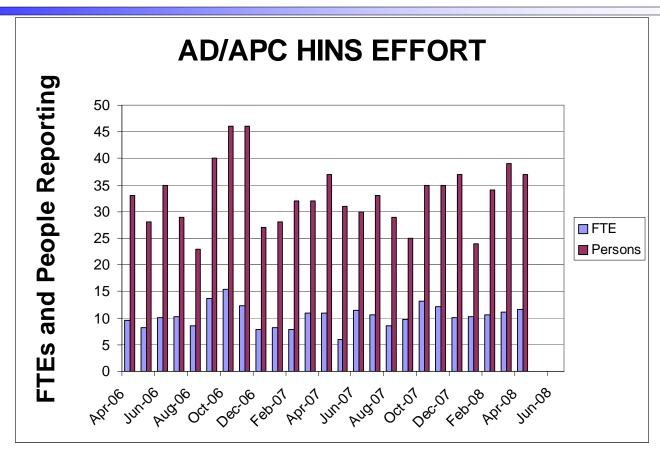


Laser Profile Monitor Collaboration with Brookhaven Lab

- Collaboration with BNL is working to build a LPM to measure H- beam X and Y profiles for HINS
 - BNL is to deliver operational laser, optics box, electron detectors, and control system
 - FNAL will provide vacuum chamber, laser launch box and optical path for FNAL installation(s)
- · Until H- is available in HINS, the first FNAL installation might be in the 400 MeV line to provide beam profiles parasitically during normal operation

Laser Profile Monitor Collaboration with Brookhaven Lab

Fermilab


Manpower Resource Tight Spots

- Critical resource areas for HINS accelerator systems and integration, also in demand by other Laboratory programs, include:
 - RF power distribution system engineering and design
 - Low level RF systems system design, modeling, hardware
 - Cryogenics system engineering and support
 - Magnet and vector modulator power and quench protection systems engineering
- Candid observation: HINS schedules presented to this committee previously have been overly optimistic
 - Furloughs, vacations, layoffs, etc will affect progress in coming months
 - Effort required for imminent Project X R&D program will further complicate the picture

HINS AD/APC Effort

- Typically ~35 AD/APC people integrate ~11 man-months effort each month
- · Typically 7-9 people report HINS effort at >50% in any month

Fermilab

Summary

- The HINS R&D program remains very active
 - Goals remain the same
 - Ambitions remain high
- Progress has been made in:
 - Completion of the 325 MHz RF power system
 - High power vector modulator testing
 - Room temperature spoke cavity RF commissioning
 - Ion source systems
 - Preparations for RFQ installation and commissioning
 - Specification and procurement of cryogenic infrastructure for cavity test cave
- Current activity is concentrated on preparing for RFQ commissioning
- Certain key resources are in high demand and short supply
- Furloughs, vacations, layoffs, etc will affect progress in coming months
- Thus, uncertainty continues to accompany HINS schedules

Back-up Slides

